LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronic Topological Transition as a Route to Improve Thermoelectric Performance in Bi0.5Sb1.5Te3

Photo by spacexuan from unsplash

The electronic structure near the Fermi surface determines the electrical properties of the materials, which can be effectively tuned by external pressure. Bi0.5Sb1.5Te3 is a p‐type thermoelectric material which holds… Click to show full abstract

The electronic structure near the Fermi surface determines the electrical properties of the materials, which can be effectively tuned by external pressure. Bi0.5Sb1.5Te3 is a p‐type thermoelectric material which holds the record high figure of merit at room temperature. Here it is examined whether the figure of merit of this model system can be further enhanced through some external parameter. With the application of pressure, it is surprisingly found that the power factor of this material exhibits λ behavior with a high value of 4.8 mW m−1 K−2 at pressure of 1.8 GPa. Such an enhancement is found to be driven by pressure‐induced electronic topological transition, which is revealed by multiple techniques. Together with a low thermal conductivity of about 0.89 W m−1 K−1 at the same pressure, a figure of merit of 1.6 is achieved at room temperature. The results and findings highlight the electronic topological transition as a new route for improving the thermoelectric properties.

Keywords: 5sb1 5te3; topological transition; pressure; bi0 5sb1; electronic topological

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.