LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High‐Performance, Flexible NO2 Chemiresistors Achieved by Design of Imine‐Incorporated n‐Type Conjugated Polymers

Photo by stayandroam from unsplash

Flexible and mechanically robust gas sensors are the key technologies for wearable and implantable electronics. Herein, the authors demonstrate the high‐performance, flexible nitrogen dioxide (NO2) chemiresistors using a series of… Click to show full abstract

Flexible and mechanically robust gas sensors are the key technologies for wearable and implantable electronics. Herein, the authors demonstrate the high‐performance, flexible nitrogen dioxide (NO2) chemiresistors using a series of n‐type conjugated polymers (CPs: PNDIT2/IM‐x) and a polymer dopant (poly(ethyleneimine), PEI). Imine double bonds (C = N) are incorporated into the backbones of the CPs with different imine contents (x) to facilitate strong and selective interactions with NO2. The PEI provides doping stability, enhanced electrical conductivity, and flexibility. As a result, the NO2 sensors with PNDIT2/IM‐0.1 and PEI (1:1 by weight ratio) exhibit outstanding sensing performances, such as excellent sensitivity (ΔR/Rb = 240% @ 1 ppm), ultralow detection limit (0.1 ppm), high selectivity (ΔR/Rb < 8% @ 1 ppm of interfering analytes), and high stability, thereby outperforming other state‐of‐the‐art CP‐based chemiresistors. Furthermore, the thin film of PNDIT2/IM‐0.1 and PEI blend is stretchable and mechanically robust, providing excellent flexibility to the NO2 sensors. Our study contributes to the rational design of high‐performance flexible gas sensors.

Keywords: type conjugated; no2 chemiresistors; imine; high performance; performance flexible

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.