LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution

Photo by samsungmemory from unsplash

Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a… Click to show full abstract

Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments.

Keywords: phosphorescence; cascaded assembly; switch based; rtp; fluorescence

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.