LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Designable Layer Edge States in Quasi‐2D Perovskites Induced by Femtosecond Pulse Laser

Photo by francogio from unsplash

The low‐energy layer edge states (LESs) from quasi 2D hybrid perovskite single crystals have shown great potential because of their nontrivial photoelectrical properties. However, the underlying formation mechanism of the… Click to show full abstract

The low‐energy layer edge states (LESs) from quasi 2D hybrid perovskite single crystals have shown great potential because of their nontrivial photoelectrical properties. However, the underlying formation mechanism of the LESs still remains controversial. Also, the presence or creation of the LESs is of high randomness due to the lack of proper techniques to manually generate these LESs. Herein, using a single crystals platform of quasi‐2D (BA)2(MA)n−1PbnI3n+1 (n > 1) perovskites, the femtosecond laser ablation approach to design and write the LESs with a high spatial resolution is reported. Fundamentally, these LESs are of smaller bandgap 3D MAPbI3 nanocrystals which are formed by the laser‐induced BA escaping from the lattice and thus the lattice shrinkage from quasi‐2D to 3D structures. Furthermore, by covering the crystal with tape, an additional high‐energy emission state corresponding to the reformation of (BA)2PbI4 (n = 1) within the irradiation region is generated. This work presents a simple and efficient protocol to manually write LESs on single crystals and thus lays the foundation for utilizing these LESs to further enhance the performance of future photoelectronic devices.

Keywords: single crystals; states quasi; edge states; layer edge; designable layer

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.