LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative 3D Characterization for Kinetics of Corrosion Initiation and Propagation in Additively Manufactured Austenitic Stainless Steel

Photo from wikipedia

In situ X‐ray computed tomography (X‐ray CT) is used to investigate the effects of characteristic microstructural features on the pitting initiation and propagation in austenitic stainless steel specimens prepared with… Click to show full abstract

In situ X‐ray computed tomography (X‐ray CT) is used to investigate the effects of characteristic microstructural features on the pitting initiation and propagation in austenitic stainless steel specimens prepared with laser powder bed fusion (LPBF) additive manufacturing. In situ X‐ray CT in probing the mechanism and kinetics of localized corrosion is demonstrated by immersing two LPBF specimens with different porosities in an aggressive ferric chloride solution for the evaluation of corrosion. X‐ray CT images are acquired from the specimens after every 8 hours of immersion over an extended period of time (216 hours). Corrosion pit growth is then quantitatively analyzed with a data‐constrained modeling method. The pitting growth mechanism of LPBF stainless steel is found to be different from that of conventional stainless steels. More specifically, the mechanism of corrosion pit initiation is closely correlated with the original lack of fusion porosity (LOF) distribution on the surface of the specimens and preferential pit propagation through the LOF pores inside the specimens. Pit growth kinetics are derived from pit volume changes determined through 3D data analysis. The pit growth kinetics in LPBF specimens are found to vary in the initial pit formation, competitive pit propagation, and the dominant pit growth stages.

Keywords: stainless steel; pit; corrosion; propagation; initiation

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.