LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Generation of Multipurpose Atomic Force Microscopy Tips (Adv. Sci. 27/2022)

Photo from wikipedia

In this work, 3D polymeric atomic force microscopy (AFM) tips, referred to as 3DTIPs, are manufactured with great flexibility in design and function using two‐photon polymerization. With the technology holding… Click to show full abstract

In this work, 3D polymeric atomic force microscopy (AFM) tips, referred to as 3DTIPs, are manufactured with great flexibility in design and function using two‐photon polymerization. With the technology holding a great potential in developing next‐generation AFM tips, 3DTIPs prove effective in obtaining high‐resolution and high‐speed AFM images in air and liquid environments, using common AFM modes. In particular, it is shown that the 3DTIPs provide high‐resolution imaging due to their extremely low Hamaker constant, high speed scanning rates due to their low quality factor, and high durability due to their soft nature and minimal isotropic tip wear; the three important features for advancing AFM studies. It is also shown that refining the tip end of the 3DTIPs by focused ion beam etching and by carbon nanotube inclusion substantially extends their functionality in high‐resolution AFM imaging, reaching angstrom scales. Altogether, the multifunctional capabilities of 3DTIPs can bring next‐generation AFM tips to routine and advanced AFM applications, and expand the fields of high speed AFM imaging and biological force measurements.

Keywords: afm tips; force microscopy; microscopy; generation; force; atomic force

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.