LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intracellular Adhesion Molecule-1 Improves Responsiveness to Immune Checkpoint Inhibitor by Activating CD8+ T Cells.

Photo from wikipedia

Immune checkpoint inhibitor (ICI) clinically benefits cancer treatment. However, the ICI responses are only achieved in a subset of patients, and the underlying mechanisms of the limited response remain unclear.… Click to show full abstract

Immune checkpoint inhibitor (ICI) clinically benefits cancer treatment. However, the ICI responses are only achieved in a subset of patients, and the underlying mechanisms of the limited response remain unclear. 160 patients with non-small cell lung cancer treated with anti-programmed cell death protein-1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) are analyzed to understand the early determinants of response to ICI. It is observed that high levels of intracellular adhesion molecule-1 (ICAM-1) in tumors and plasma of patients are associated with prolonged survival. Further reverse translational studies using murine syngeneic tumor models reveal that soluble ICAM-1 (sICAM-1) is a key molecule that increases the efficacy of anti-PD-1 via activation of cytotoxic T cells. Moreover, chemokine (CXC motif) ligand 13 (CXCL13) in tumors and plasma is correlated with the level of ICAM-1 and ICI efficacy, suggesting that CXCL13 might be involved in the ICAM-1-mediated anti-tumor pathway. Using sICAM-1 alone and in combination with anti-PD-1 enhances anti-tumor efficacy in anti-PD-1-responsive tumors in murine models. Notably, combinatorial therapy with sICAM-1 and anti-PD-1 converts anti-PD-1-resistant tumors to responsive ones in a preclinical study. These findings provide a new immunotherapeutic strategy for treating cancers using ICAM-1.

Keywords: intracellular adhesion; checkpoint inhibitor; immune checkpoint; molecule; adhesion molecule

Journal Title: Advanced science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.