LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ni‐Doped CuO Nanoarrays Activate Urea Adsorption and Stabilizes Reaction Intermediates to Achieve High‐Performance Urea Oxidation Catalysts

Urea oxidation reaction (UOR) with a low equilibrium potential offers a promising route to replace the oxygen evolution reaction for energy‐saving hydrogen generation. However, the overpotential of the UOR is… Click to show full abstract

Urea oxidation reaction (UOR) with a low equilibrium potential offers a promising route to replace the oxygen evolution reaction for energy‐saving hydrogen generation. However, the overpotential of the UOR is still high due to the complicated 6e− transfer process and adsorption/desorption of intermediate products. Herein, utilizing a cation exchange strategy, Ni‐doped CuO nanoarrays grown on 3D Cu foam are synthesized. Notably, Ni‐CuO NAs/CF requires a low potential of 1.366 V versus a reversible hydrogen electrode to drive a current density of 100 mA cm−2, outperforming various benchmark electrocatalysts and maintaining robust stability in alkaline media. Theoretical and experimental studies reveal that Ni as the driving force center can effectively enhance the urea adsorption and stabilize CO*/NH* intermediates toward the UOR. These findings suggest a new direction for constructing nanostructures and modulating electronic structures, ultimately developing promising Cu‐based electrode catalysts.

Keywords: adsorption; cuo nanoarrays; reaction; urea adsorption; doped cuo; urea oxidation

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.