LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polymer Electrolyte/Sulfur Double‐Shelled Anisotropic Reduced Graphene Oxide Lamellar Scaffold Enables Stable and High‐Loading Cathode for Quasi‐Solid‐State Lithium‐Sulfur Batteries

Photo from wikipedia

Lithium‐sulfur batteries (LSBs) can replace lithium‐ion batteries by delivering a higher specific capacity. However, the areal capacity of current LSBs is low because the intrinsic limitations of sulfur make achieving… Click to show full abstract

Lithium‐sulfur batteries (LSBs) can replace lithium‐ion batteries by delivering a higher specific capacity. However, the areal capacity of current LSBs is low because the intrinsic limitations of sulfur make achieving a high sulfur loading difficult. Herein, the authors report vertically aligned reduced graphene oxide (rGO) with sulfur and poly(ethylene oxide)‐based polymer electrolyte double‐shell layers (VRG@S@PPE) as a high‐loading sulfur cathode. The addition of vapor‐grown carbon fiber (VGCF) into rGO is the key to success, as it allows for gas evacuation from internal nano/micropores without structural collapse, enabling perfect double‐shell layer contact. Owing to the anisotropic rGO lamellar structure that enables straightforward ion/electron transport and provides numerous active sites, sulfur‐infiltrated rGO reinforced via VGCF (VRG@S) exhibits a high capacity of 998 mAh g−1 after 100 cycles at 0.1 C under high sulfur loading (6 mg cm−2). Interestingly, an additional polymer electrolyte layer further increases the cycle retention (1005 and 718 mAh g−1 after 100 cycles at 0.1 and 1 C, respectively), because intimate contact between the solid polymer electrolyte and sulfur could suppress the loss of sulfur due to lithium polysulfide (LPS) shuttling or volume change during lithiation/delithiation. Therefore, it is possible to realize safe and stable quasi‐solid‐state LSBs with high sulfur loading.

Keywords: lithium sulfur; sulfur; sulfur batteries; reduced graphene; polymer electrolyte

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.