LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Sprayed Biotherapeutic Gel Containing Stable Microbial Communities for Efficient Anti‐Infection Treatment

Photo from wikipedia

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug‐resistant bacteria. Here, an in situ‐formed biotherapeutic gel that controls multidrug‐resistant bacterial infections and… Click to show full abstract

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug‐resistant bacteria. Here, an in situ‐formed biotherapeutic gel that controls multidrug‐resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene‐polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities‐based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria‐derived xenograft infection models, as well as in patient‐derived multidrug‐resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad‐spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug‐resistant bacterial infections.

Keywords: biotherapeutic gel; infection; gel; multidrug resistant; stable microbial; microbial communities

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.