LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Space Confinement to Regulate Ultrafine CoPt Nanoalloy for Reliable Oxygen Reduction Reaction Catalyst in PEMFC.

A Co-based zeolitic imidazolate framework (ZIF-67) derived catalyst with ultrafine CoPt nanoalloy particles is designed via a two-step space confinement method, to achieve a robust oxygen reduction reaction (ORR) performance… Click to show full abstract

A Co-based zeolitic imidazolate framework (ZIF-67) derived catalyst with ultrafine CoPt nanoalloy particles is designed via a two-step space confinement method, to achieve a robust oxygen reduction reaction (ORR) performance for proton exchange membrane fuel cell (PEMFC). The core-shell structure of ZIF-67 (core) and SiO2 (shell) is carefully adjusted to inhibit the agglomeration of Co nanoparticles. In the subsequent adsorption-annealing process, the in situ formed graphene shell on the surface of Co nanoparticles further protects metal particles from coalescence, leading to the ultrafine CoPt nanoalloy (average diameter is 2.61 nm). Benefitting from the high utilization of Pt metal, the mass activity of CoPt nanoalloy catalyst reaches 681.8 mA mgPt -1 at 0.9 V versus RHE according to the rotating disk electrode test in 0.1 m HClO4 solution. The CoPt nanoalloy-based PEMFC provides a high maximum power density of 2.22 W cm-2 (H2 /O2 ) and 0.923 W cm-2 (H2 /air). Simultaneously, it shows good stability in the long-time dynamic test at low humidity, due to the robust CoPt@graphene core-shell nanostructure. This work provides a viable strategy for designing Pt-based nanoalloy catalysts with ultrafine metal particles and high stability.

Keywords: copt nanoalloy; oxygen reduction; space confinement; copt; ultrafine copt

Journal Title: Advanced science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.