LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

All‐Natural Immunomodulatory Bioadhesive Hydrogel Promotes Angiogenesis and Diabetic Wound Healing by Regulating Macrophage Heterogeneity

Photo from wikipedia

Macrophages are highly heterogeneous and exhibit a diversity of functions and phenotypes. They can be divided into pro‐inflammatory macrophages (M1) and anti‐inflammatory macrophages (M2). Diabetic wounds are characterized by a… Click to show full abstract

Macrophages are highly heterogeneous and exhibit a diversity of functions and phenotypes. They can be divided into pro‐inflammatory macrophages (M1) and anti‐inflammatory macrophages (M2). Diabetic wounds are characterized by a prolonged inflammatory phase and difficulty in healing due to the accumulation of pro‐inflammatory (M1) macrophages in the wound. Therefore, hydrogel dressings with macrophage heterogeneity regulation function hold great promise in promoting diabetic wound healing in clinical applications. However, the precise conversion of pro‐inflammatory M1 to anti‐inflammatory M2 macrophages by simple and biosafe approaches is still a great challenge. Here, an all‐natural hydrogel with the ability to regulate macrophage heterogeneity is developed to promote angiogenesis and diabetic wound healing. The protocatechuic aldehyde hybridized collagen‐based all‐natural hydrogel exhibits good bioadhesive and antibacterial properties as well as reactive oxygen species scavenging ability. More importantly, the hydrogel is able to convert M1 macrophages into M2 macrophages without the need for any additional ingredients or external intervention. This simple and safe immunomodulatory approach shows great application potential for shortening the inflammatory phase of diabetic wound repair and accelerating wound healing.

Keywords: diabetic wound; inflammatory; wound healing; macrophage heterogeneity

Journal Title: Advanced Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.