LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stepwise Amplification of Circularly Polarized Luminescence in Chiral Metal Cluster Ensembles

Photo by trnavskauni from unsplash

Chiral metal‐organic frameworks (MOFs) are usually endowed by chiral linkers and/or guests. The strategy using chiral secondary building units in MOFs for solving the trade‐off of circularly polarized luminescence (CPL)‐active… Click to show full abstract

Chiral metal‐organic frameworks (MOFs) are usually endowed by chiral linkers and/or guests. The strategy using chiral secondary building units in MOFs for solving the trade‐off of circularly polarized luminescence (CPL)‐active materials, high photoluminescence quantum yields (PLQYs) and high dissymmetry factors (|glum|) has not been demonstrated. This work directionally assembles predesigned chiral silver clusters with ACQ linkers through reticular chemistry. The nanoscale chirality of the cluster transmits through MOF's framework, where the linkers are arranged in a quasi‐parallel manner and are efficiently isolated and rigidified. Consequently, this backbone of chiral cluster‐based MOFs demonstrates superb CPL, high PLQYs of 50.3%, and |glum| of 1.2 × 10−2. Crystallographic analyses and DFT calculations show the quasi‐parallel arrangement manners of emitting linkers leading to a large angle between the electric and magnetic transition dipole moments, boosting CPL response. As compared, an ion‐pair‐direct assembly without interactions between linkers induces one‐ninth |glum| and one‐sixth PLQY values, further highlighting the merits of directional arrangement in reticular nets. In addition, a prototype CPL switching fabricated by a chiral framework is controlled through alternating ultraviolet and visible light. This work is expected to inspire the development of reticular chemistry for high‐performance chiroptical materials.

Keywords: chemistry; cluster; polarized luminescence; chiral metal; circularly polarized

Journal Title: Advanced Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.