LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Bifunctional Liquid Fuel Cell Coupling Power Generation and V3.5+ Electrolytes Production for All Vanadium Flow Batteries.

Photo from wikipedia

All vanadium flow batteries (VFBs) are considered one of the most promising large-scale energy storage technology, but restricts by the high manufacturing cost of V3.5+ electrolytes using the current electrolysis… Click to show full abstract

All vanadium flow batteries (VFBs) are considered one of the most promising large-scale energy storage technology, but restricts by the high manufacturing cost of V3.5+ electrolytes using the current electrolysis method. Here, a bifunctional liquid fuel cell is designed and proposed to produce V3.5+ electrolytes and generate power energy by using formic acid as fuels and V4+ as oxidants. Compared with the traditional electrolysis method, this method not only does not consume additional electric energy, but also can output electric energy. Therefore, the process cost of producing V3.5+ electrolytes is reduced by 16.3%. This fuel cell has a maximum power of 0.276 mW cm-2 at an operating current of 1.75 mA cm-2 . Ultraviolet-visible spectrum and potentiometric titration identify the oxidation state of prepared vanadium electrolytes is 3.48 ± 0.06, close to the ideal 3.5. VFBs with prepared V3.5+ electrolytes deliver similar energy conversion efficiency and superior capacity retention to that with commercial V3.5+ electrolytes. This work proposes a simple and practical strategy to prepare V3.5+ electrolytes.

Keywords: fuel cell; vanadium; energy; power

Journal Title: Advanced science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.