LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Doppler Frequency‐Shift Information Processing in WO x ‐Based Memristive Synapse for Auditory Motion Perception

Photo by argyriou from unsplash

Auditory motion perception is one crucial capability to decode and discriminate the spatiotemporal information for neuromorphic auditory systems. Doppler frequency‐shift feature and interaural time difference (ITD) are two fundamental cues… Click to show full abstract

Auditory motion perception is one crucial capability to decode and discriminate the spatiotemporal information for neuromorphic auditory systems. Doppler frequency‐shift feature and interaural time difference (ITD) are two fundamental cues of auditory information processing. In this work, the functions of azimuth detection and velocity detection, as the typical auditory motion perception, are demonstrated in a WOx‐based memristive synapse. The WOx memristor presents both the volatile mode (M1) and semi‐nonvolatile mode (M2), which are capable of implementing the high‐pass filtering and processing the spike trains with a relative timing and frequency shift. In particular, the Doppler frequency‐shift information processing for velocity detection is emulated in the WOx memristor based auditory system for the first time, which relies on a scheme of triplet spike‐timing‐dependent‐plasticity in the memristor. These results provide new opportunities for the mimicry of auditory motion perception and enable the auditory sensory system to be applied in future neuromorphic sensing.

Keywords: frequency shift; auditory motion; auditory; motion perception

Journal Title: Advanced Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.