LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanographene‐Based Heterojunctions for High‐Performance Organic Phototransistor Memory Devices

Photo by laurenmancke from unsplash

Organic phototransistors can enable many important applications such as nonvolatile memory, artificial synapses, and photodetectors in next‐generation optical communication and wearable electronics. However, it is still a challenge to achieve… Click to show full abstract

Organic phototransistors can enable many important applications such as nonvolatile memory, artificial synapses, and photodetectors in next‐generation optical communication and wearable electronics. However, it is still a challenge to achieve a big memory window (threshold voltage response ∆Vth) for phototransistors. Here, a nanographene‐based heterojunction phototransistor memory with large ∆Vth responses is reported. Exposure to low intensity light (25.7 µW cm−2) for 1 s yields a memory window of 35 V, and the threshold voltage shift is found to be larger than 140 V under continuous light illumination. The device exhibits both good photosensitivity (3.6 × 105) and memory properties including long retention time (>1.5 × 105 s), large hysteresis (45.35 V), and high endurance for voltage‐erasing and light‐programming. These findings demonstrate the high application potential of nanographenes in the field of optoelectronics. In addition, the working principle of these hybrid nanographene‐organic structured heterojunction phototransistor memory devices is described which provides new insight into the design of high‐performance organic phototransistor devices.

Keywords: nanographene based; phototransistor; memory devices; memory; high performance; phototransistor memory

Journal Title: Advanced Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.