LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomimetic Remodeling of Microglial Riboflavin Metabolism Ameliorates Cognitive Impairment by Modulating Neuroinflammation

Photo by jdavydko from unsplash

Neuroinflammation, for which microglia are the predominant contributors, is a significant risk factor for cognitive dysfunction. Riboflavin (also known as vitamin B2) ameliorates cognitive impairment via anti‐oxidative stress and anti‐inflammation… Click to show full abstract

Neuroinflammation, for which microglia are the predominant contributors, is a significant risk factor for cognitive dysfunction. Riboflavin (also known as vitamin B2) ameliorates cognitive impairment via anti‐oxidative stress and anti‐inflammation properties; however, the underlying mechanisms linking riboflavin metabolism and microglial function in cognitive impairment remain unclear. Here, it is demonstrated that riboflavin kinase (RFK), a critical enzyme in riboflavin metabolism, is specifically expressed in microglia. An intermediate product of riboflavin, flavin mononucleotide (FMN), inhibited RFK expression via regulation of lysine‐specific methyltransferase 2B (KMT2B). FMN supplementation attenuated the pro‐inflammatory TNFR1/NF‐κB signaling pathway, and this effect is abolished by KMT2B overexpression. To improve the limited anti‐inflammatory efficiency of free FMN, a biomimetic microglial nanoparticle strategy (designated as MNPs@FMN) is established, which penetrated the blood brain barrier with enhanced microglial‐targeted delivery efficiency. Notably, MNPs@FMN ameliorated cognitive impairment and dysfunctional synaptic plasticity in a lipopolysaccharide‐induced inflammatory mouse model and in a 5xFAD mouse model of Alzheimer's disease. Taken together, biomimetic microglial delivery of FMN may serve as a potential therapeutic approach for inflammation‐dependent cognitive decline.

Keywords: cognitive impairment; riboflavin metabolism; riboflavin; ameliorates cognitive

Journal Title: Advanced Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.