LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrathin, Soft, Bioresorbable Organic Electrochemical Transistors for Transient Spatiotemporal Mapping of Brain Activity

Photo by jupp from unsplash

A critical challenge lies in the development of the next‐generation neural interface, in mechanically tissue‐compatible fashion, that offer accurate, transient recording electrophysiological (EP) information and autonomous degradation after stable operation.… Click to show full abstract

A critical challenge lies in the development of the next‐generation neural interface, in mechanically tissue‐compatible fashion, that offer accurate, transient recording electrophysiological (EP) information and autonomous degradation after stable operation. Here, an ultrathin, lightweight, soft and multichannel neural interface is presented based on organic‐electrochemical‐transistor‐(OECT)‐based network, with capabilities of continuous high‐fidelity mapping of neural signals and biosafety active degrading after performing functions. Such platform yields a high spatiotemporal resolution of 1.42 ms and 20 µm, with signal‐to‐noise ratio up to ≈37 dB. The implantable OECT arrays can well establish stable functional neural interfaces, designed as fully biodegradable electronic platforms in vivo. Demonstrated applications of such OECT implants include real‐time monitoring of electrical activities from the cortical surface of rats under various conditions (e.g., narcosis, epileptic seizure, and electric stimuli) and electrocorticography mapping from 100 channels. This technology offers general applicability in neural interfaces, with great potential utility in treatment/diagnosis of neurological disorders.

Keywords: electrochemical transistors; organic electrochemical; bioresorbable organic; soft bioresorbable; transistors transient; ultrathin soft

Journal Title: Advanced Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.