As potential alternatives to Li-ion batteries, rechargeable Ca metal batteries offer advantageous features such as high energy density, cost-effectiveness, and natural elemental abundance. However, challenges, such as Ca metal passivation… Click to show full abstract
As potential alternatives to Li-ion batteries, rechargeable Ca metal batteries offer advantageous features such as high energy density, cost-effectiveness, and natural elemental abundance. However, challenges, such as Ca metal passivation by electrolytes and a lack of cathode materials with efficient Ca2+ storage capabilities, impede the development of practical Ca metal batteries. To overcome these limitations, the applicability of a CuS cathode in Ca metal batteries and its electrochemical properties are verified herein. Ex situ spectroscopy and electron microscopy results show that a CuS cathode comprising nanoparticles that are well dispersed in a high-surface-area carbon matrix can serve as an effective cathode for Ca2+ storage via the conversion reaction. This optimally functioning cathode is coupled with a tailored, weakly coordinating monocarborane-anion electrolyte, namely, Ca(CB11 H12 )2 in 1,2-dimethoxyethane/tetrahydrofuran, which enables reversible Ca plating/stripping at room temperature. The combination affords a Ca metal battery with a long cycle life of over 500 cycles and capacity retention of 92% based on the capacity of the 10th cycle. This study confirms the feasibility of the long-term operation of Ca metal anodes and can expedite the development of Ca metal batteries.
               
Click one of the above tabs to view related content.