LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-Tunable Nonvolatile Memory Characteristics in Photochromic RRAM

Photo by kellysikkema from unsplash

Light-tunable resistive switching (RS) characteristics are demonstrated in a photochromophore (BMThCE)-based resistive random access memory. Triggered by nondestructive ultraviolet or visible light irradiation, two memory-type RS characteristics can be reversibly… Click to show full abstract

Light-tunable resistive switching (RS) characteristics are demonstrated in a photochromophore (BMThCE)-based resistive random access memory. Triggered by nondestructive ultraviolet or visible light irradiation, two memory-type RS characteristics can be reversibly modulated in the same device upon a narrow range of applied voltage (<6 V), accompanied by the photochromophores in the active layer reversibly changed between ring-open state (namely, o-BMThCE) and ring-closed state (namely, c-BMThCE). The o-BMThCE-based memory exhibits a write-once-read-many characteristic with a high current on/off ratio of 105, while the c-BMThCE-based one shows a flash characteristic. Both of the RS characteristics present good nonvolatile stability with the resistance states maintained over 104 s without variation. This RS modulation is possibly related to the formation and rupture of conductive filaments, which formed along channels consisting of BMThCE trapping molecules. This work provides a new memory element for the design of light-controllable high density storage and data encryption technology.

Keywords: nonvolatile memory; memory; tunable nonvolatile; bmthce based; light tunable

Journal Title: Advanced electronic materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.