LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultralow Electrical Hysteresis along with High Energy‐Storage Density in Lead‐Based Antiferroelectric Ceramics

Photo from wikipedia

Antiferroelectric ceramics with extraordinary energy‐storage density have gained exponentially soaring attention for their applications in pulsed power capacitors. Nevertheless, high energy dissipation is a deficiency of antiferroelectric materials. The modulation… Click to show full abstract

Antiferroelectric ceramics with extraordinary energy‐storage density have gained exponentially soaring attention for their applications in pulsed power capacitors. Nevertheless, high energy dissipation is a deficiency of antiferroelectric materials. The modulation of Ba/La‐doped (Pb0.91BaxLa0.06−2x/3)(Zr0.6Sn0.4)O3 (x = 0.015, 0.03, 0.045, 0.06) antiferroelectric ceramics is aimed at increasing the energy efficiency and obtaining an ideal energy storage density. The traditional solid‐state reaction is exploited for ceramics fabrication and all prepared samples exhibit an ultralow electrical hysteresis due to the local structural heterogeneity, as verified by Raman spectroscopy. Of particular importance is the fact that the (Pb0.91Ba0.045La0.03)(Zr0.6Sn0.4)O3 ceramic possesses an excellent recoverable energy storage density (Wrec = 8.16 J cm−3) and a remarkable energy efficiency (η = 92.1%) simultaneously under an electric field of 340 kV cm−1. Moreover, the corresponding ceramic exhibits a superior discharge current density (CD = 1498.6 A cm−2), a high level of power density (PD = 202.3 MW cm−3), and a nanosecond‐level discharge period (53 ns). This provides a promising antiferroelectric material for fabricating ceramic capacitors with excellent energy storage and high power characteristics.

Keywords: energy; density; antiferroelectric ceramics; storage density; energy storage

Journal Title: Advanced Electronic Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.