LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting the Thermoelectric Properties of PEDOT:PSS via Low‐Impact Deposition of Tin Oxide Nanoparticles

Photo from wikipedia

Poly(3,4‐ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) exhibits valuable characteristics concerning stability, green‐processing, flexibility, high electrical conductivity, and ease of property modulation, qualifying it as one of the most promising p‐type organic conductors for… Click to show full abstract

Poly(3,4‐ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) exhibits valuable characteristics concerning stability, green‐processing, flexibility, high electrical conductivity, and ease of property modulation, qualifying it as one of the most promising p‐type organic conductors for thermoelectric (TE) applications. While blending with inorganic counterparts is considered a good strategy to further improve polymeric TE properties, only a few attempts succeed so far due to inhomogeneous embedding and the non‐ideal organic‐inorganic contact. Here a new strategy to include nanoparticles (NPs) without any ligand termination inside PEDOT:PSS thin films is proposed. Spark discharge‐generated tin oxide NPs (SnOx‐NPs) are “gently” and homogenously deposited through low‐energy diffusion mode. Strong interaction between naked SnOx‐NPs and PSS chains occurs in the topmost layer, causing a structural reorganization towards an improved PEDOT chains crystalline packing at the bottom, providing a positive contribution to the electrical conductivity. Meanwhile, dedoping and energy filtering effect introduced by the SnOx‐NPs cause dramatic Seebeck coefficient enhancement. The optimized power factor of 116 μWm−1 K−2 achieved is more than six times higher than the value found for the film without NPs. This easy and efficient strategy promises well for future mass production of flexible TE devices and the mechanism revealed may inspire future research on TEs and flexible electronics.

Keywords: properties pedot; boosting thermoelectric; pedot pss; thermoelectric properties; tin oxide; snox nps

Journal Title: Advanced Electronic Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.