LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Opening Two‐Dimensional Materials for Energy Conversion and Storage: A Concept

Photo from wikipedia

The development of two-dimensional (2D) materials is experiencing a renaissance since the adventure of graphene. 2D materials typically exhibit strong in-plane covalent bonding and weak out-of-plane van der Waals interactions… Click to show full abstract

The development of two-dimensional (2D) materials is experiencing a renaissance since the adventure of graphene. 2D materials typically exhibit strong in-plane covalent bonding and weak out-of-plane van der Waals interactions through the interlayer gap. Opening 2D materials is an effective way to alter the physical and chemical properties, such as band gap, conductivity, optical property, thermoelectric property, photovoltaic property and superconductivity. A larger interlayer distance means more accessible active sites for catalysis, an ion-accessible surface in the interlayer space, which may greatly enhance the performance of 2D materials for energy conversion and storage. Moreover, opening 2D materials by intercalation can change the band filling state and the Fermi level. This review mainly focuses on the opening of 2D materials and their subsequent applications in energy conversion and storage fields, expecting to promote the development of such a new class of materials, namely expanded 2D materials. The exciting progresses of these expanded materials made in both energy conversion and storage devices including solar cells, thermoelectric devices, electrocatalyst, supercapacitors and rechargeable batteries, is presented and discussed in depth. Furthermore, prospects and further developments in these exciting fields of the expanded 2D materials are also commented.

Keywords: two dimensional; conversion storage; energy conversion; energy

Journal Title: Advanced Energy Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.