LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Outstanding Performance of Hole‐Blocking Layer‐Free Perovskite Solar Cell Using Hierarchically Porous Fluorine‐Doped Tin Oxide Substrate

Photo from wikipedia

Perovskite solar cells (PSCs) are of great interest in current photovoltaic research due to their extraordinary power conversion efficiency of ≈20% and boundless potentialities. The high efficiency has been mostly… Click to show full abstract

Perovskite solar cells (PSCs) are of great interest in current photovoltaic research due to their extraordinary power conversion efficiency of ≈20% and boundless potentialities. The high efficiency has been mostly obtained from TiO2-based PSCs, where TiO2 is utilized as a hole-blocking, mesoporous layer. However, trapped charges and the light-induced photocatalytic effect of TiO2 seriously degrade the perovskite and preclude PSCs from being immediately commercialized. Herein, a simplified PSC is successfully fabricated by eliminating the problematic TiO2 layers, using instead a fluorine-doped tin oxide (FTO)/perovskite/hole–conductor/Au design. Simultaneously, the sluggish charge extraction at the FTO/perovskite interface is overcome by modifying the surface of the FTO to a porous structure using electrochemical etching. This surface engineering enables a substantial increase in the photocurrent density and mitigation of the hysteretic behavior of the pristine FTO-based PSC; a remarkable 19.22% efficiency with a low level of hysteresis is obtained. This performance is closely approaching that of conventional PSCs and may facilitate their commercialization due to improved convenience, lower cost, greater stability, and potentially more efficient mass production.

Keywords: hole blocking; perovskite solar; hole; doped tin; fluorine doped; tin oxide

Journal Title: Advanced Energy Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.