LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-Crystalline Nanomesh Tantalum Nitride Photocatalyst with Improved Hydrogen-Evolving Performance

Photo by kalineri from unsplash

Tantalum nitride (Ta3N5) with a suitable bandgap (≈2 eV) is regarded as one of the most promising photocatalysts for efficient solar energy harvesting and conversion. However, Ta3N5 suffers from low… Click to show full abstract

Tantalum nitride (Ta3N5) with a suitable bandgap (≈2 eV) is regarded as one of the most promising photocatalysts for efficient solar energy harvesting and conversion. However, Ta3N5 suffers from low hydrogen production activity due to the low carrier mobility and fast carrier recombination. Thus, the design of Ta3N5 nanostructures to facilitate charge carrier transport and improve photocatalytic performance remains a challenge. This study reports a new type of ultrathin (≈2 nm) Ta3N5 nanomesh with high specific surface area (284.6 m2 g−1) and excellent crystallinity by an innovative bottom-up graphene oxide templated strategy. The resulting Ta3N5 nanomeshes demonstrate drastically improved electron transport ability and prolonged lifetime of charge carriers, due to the nature of high surface area and excellent crystallinity. As a result, when used as photocatalysts, the Ta3N5 nanomeshes exhibit a greater than tenfold improvement in solar hydrogen production compared to bulk counterparts. This work provides an effective and generic strategy for designing 2D ultrathin nanomesh structures for nonlayered materials with improved catalytic activity.

Keywords: tantalum nitride; hydrogen; crystalline nanomesh; single crystalline; performance

Journal Title: Advanced Energy Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.