LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fatigue‐Free and Bending‐Endurable Flexible Mn‐Doped Na0.5Bi0.5TiO3‐BaTiO3‐BiFeO3 Film Capacitor with an Ultrahigh Energy Storage Performance

Photo from wikipedia

As the rapid development of intelligent systems moves toward flexible electronics, capacitors with extraordinary flexibility and an outstanding energy storage performance will open up broad prospects for powering portable/wearable electronics… Click to show full abstract

As the rapid development of intelligent systems moves toward flexible electronics, capacitors with extraordinary flexibility and an outstanding energy storage performance will open up broad prospects for powering portable/wearable electronics and pulsed power applications. This work presents a simple one‐step process to fabricate a flexible Mn‐doped 0.97(0.93Na0.5Bi0.5TiO3‐0.07BaTiO3)‐0.03BiFeO3 (Mn:NBT‐BT‐BFO) inorganic thin film capacitor with the assistance of a 2D fluorophlogopite mica substrate. The film element, which has a high breakdown strength, great relaxor dispersion, and the coexistence of ferroelectric and antiferroelectric phases, has a high recoverable energy storage density (Wrec ≈81.9 J cm−3), high efficiency (η ≈64.4%), superior frequency stability (500 Hz–20 kHz), excellent antifatigue property (1 × 109 cycles), and a broad operating temperature window (25–200 °C). The all‐inorganic Mn:NBT‐BT‐BFO/Pt/mica capacitor has a prominent mechanical‐bending resistance without obvious deterioration in its corresponding energy storage capability when it is subjected to a bending radius of 2 mm or repeated bending for 103 cycles. This work is the first demonstration of an all‐inorganic flexible film capacitor and sheds light on dielectric energy storage devices for portable/wearable applications.

Keywords: energy; film capacitor; energy storage

Journal Title: Advanced Energy Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.