LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen Release Degradation in Li‐Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches

Photo from wikipedia

Widespread application of Li‐ion batteries (LIBs) in large‐scale transportation and grid storage systems requires highly stable and safe performance of the batteries in prolonged and diverse service conditions. Oxygen release… Click to show full abstract

Widespread application of Li‐ion batteries (LIBs) in large‐scale transportation and grid storage systems requires highly stable and safe performance of the batteries in prolonged and diverse service conditions. Oxygen release from oxygen‐containing positive electrode materials is one of the major structural degradations resulting in rapid capacity/voltage fading of the battery and triggering the parasitic thermal runaway events. Herein, the authors summarize the recent progress in understanding the mechanisms of the oxygen release phenomena and correlative structural degradations observed in four major groups of cathode materials: layered, spinel, olivine, and Li‐rich cathodes. In addition, the engineering and materials design approaches that improve the structural integrity of the cathode materials and minimize the detrimental O2 evolution reaction are summarized. The authors believe that this review can guide researchers on developing mitigation strategies for the design of next‐generation oxygen‐containing cathode materials where the oxygen release is no longer a major degradation issue.

Keywords: ion; cathode materials; oxygen release

Journal Title: Advanced Energy Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.