A new experimental framework for the characterization of defects in semiconductors is demonstrated. Through the direct, energy‐resolved correlation of three analytical techniques spanning six orders of magnitude in spatial resolution,… Click to show full abstract
A new experimental framework for the characterization of defects in semiconductors is demonstrated. Through the direct, energy‐resolved correlation of three analytical techniques spanning six orders of magnitude in spatial resolution, a critical mid‐bandgap electronic trap level (EV + 0.56 eV) within Ag0.2Cu0.8In1−xGaxSe2 is traced to its nanoscale physical location and chemical source. This is achieved through a stepwise, site‐specific correlated characterization workflow consisting of device‐scale (≈1 mm2) deep level transient spectroscopy (DLTS) to survey the traps present, scanning probe–based DLTS (scanning‐DLTS) for mesoscale‐resolved (hundreds of nanometers) mapping of the target trap state's spatial distribution, and scanning transmission electron microscope based electron energy‐loss spectroscopy (STEM‐EELS) and X‐ray energy‐dispersive spectroscopy for nanoscale energy‐, structure, and chemical‐resolved investigation of the defect source. This first demonstration of the direct observation of sub‐bandgap defect levels via STEM‐EELS, combined with the DLTS methods, provides strong evidence that the long‐suspected CuIn/Ga substitutional defects are indeed the most likely source of the EV + 0.56 eV trap state and serves as a key example of this approach for the fundamental identification of defects within semiconductors, in general.
               
Click one of the above tabs to view related content.