High‐loading lithium–sulfur batteries have gained considerable fame for possessing high area capacity, but face a stern challenge from capacity fading because of serious issues, including “polysulfides shuttling,” insulating S/Li2S, large… Click to show full abstract
High‐loading lithium–sulfur batteries have gained considerable fame for possessing high area capacity, but face a stern challenge from capacity fading because of serious issues, including “polysulfides shuttling,” insulating S/Li2S, large volume changes, and the shedding of S/C particles during drying or the cell encapsulation process. Herein, a bioinspired water‐soluble binder framework is constructed via intermolecular physical cross‐linking of functional side chains hanging on the terpolymer binder. Experimental results and density‐functional theory (DFT) calculations reveal that this network binder featuring superior volume change accommodation can also capture lithium polysulfides (LiPSs) through strong anchoring of O, N+ actives to LiPSs by forming Li···O and N+···Sx2− bonds. In addition, the abundant negative charged sulfonate coordination sites and good electrolyte uptake of the designed binder endow the assembled cells with high lithium ion conductivity and fast lithium ion diffusion. Consequently, a remarkable capacity retention of 98% after 350 cycles at 1 C and a high areal capacity of 12.8 mA h cm−2 with high sulfur loading of 12.0 mg cm−2 are achieved by applying the environmentally friendly binder.
               
Click one of the above tabs to view related content.