LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accurate Control Multiple Active Sites of Carbonaceous Anode for High Performance Sodium Storage: Insights into Capacitive Contribution Mechanism

Photo by clemono from unsplash

Heteroatom doping is widely recognized as an appealing strategy to break the capacitance limitation of carbonaceous materials toward sodium storage. However, the concrete effects, especially for heteroatomic phase transformation, during… Click to show full abstract

Heteroatom doping is widely recognized as an appealing strategy to break the capacitance limitation of carbonaceous materials toward sodium storage. However, the concrete effects, especially for heteroatomic phase transformation, during the sodium storage reaction remain a confusing topic. Here, a novel hypercrosslinked polymerization approach is demonstrated to fabricate pyrrole/thiophene hypercrosslinked microporous copolymer and further give porous carbonaceous materials with accurately regulated N/S dual doping corresponding to starting feeding ratios. Significantly, the N doping contributes to the conductivity and surface wettability, while the S doping is bridged to build stable active sites, which can be electrochemically converted into mercaptan anions via faraday reaction and further enhancing reversible capacities. Meanwhile, the abundant S doping can also conduce to the expanded interlayer spacing to shorten the ions diffusion distance, thus optimizing the reaction kinetic. As a result, the N0.2S0.8‐micro‐dominant porous carbon delivers the highest reversible capacity of 521 mAh g−1 at 100 mA g−1 and excellent cyclic stability over 2000 cycles at 2000 mA g−1 with a capacity decay of 0.0145 mAh g−1 per cycle. This work is anticipated to provide an in‐depth understanding of capacitance contribution and illuminate the heteroatomic phase transformation during sodium storage reactions for doping carbonaceous anodes.

Keywords: accurate control; contribution; active sites; sodium; sodium storage

Journal Title: Advanced Energy Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.