LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PVP Treatment Induced Gradient Oxygen Doping in In2S3 Nanosheet to Boost Solar Water Oxidation of WO3 Nanoarray Photoanode

Photo from wikipedia

The photoelectrochemical performance of the WO3 photoanode is limited by the severe charge recombination in the bulk phase and at the WO3/electrolyte interface. Herein, In2S3 nanosheets are integrated onto the… Click to show full abstract

The photoelectrochemical performance of the WO3 photoanode is limited by the severe charge recombination in the bulk phase and at the WO3/electrolyte interface. Herein, In2S3 nanosheets are integrated onto the surface of the WO3 nanowall array photoanode, followed by a facile polyvinylpyrrolidone (PVP) solution treatment. The PVP treatment results in sulfur vacancies and a gradient oxygen doping into In2S3 from surface to interior, which induces the formation of a gradient energy band distribution. The gradient band structured In2S3 and type II band alignment at the WO3/In2S3 interface simultaneously create a channel that favors photogenerated electrons to migrate from the surface to the conductive substrate, thereby suppressing bulk carrier recombination. Meanwhile, the sulfur vacancies and oxygen doping contribute to increased charge carrier concentration, prolonged carrier lifetime, more active sites, and small interfacial transfer impedance. As a consequence, the PVP treated WO3/In2S3 heterostructure photoanode exhibits a significantly enhanced photocurrent of 1.61 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE) and negative onset potential of 0.02 V versus RHE.

Keywords: oxygen doping; wo3; gradient oxygen; photoanode; pvp treatment

Journal Title: Advanced Energy Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.