LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single‐Unit‐Cell Catalysis of CO2 Electroreduction over Sub‐1 nm Cu9S5 Nanowires

Photo by nci from unsplash

As a bridge between nanocrystal catalysts and single‐atom catalysts, single‐unit‐cell catalysts seem at first glance to be unavailable for catalysis due to quantum effects and synthetic difficulties. Here, 24 nm… Click to show full abstract

As a bridge between nanocrystal catalysts and single‐atom catalysts, single‐unit‐cell catalysts seem at first glance to be unavailable for catalysis due to quantum effects and synthetic difficulties. Here, 24 nm Cu9S5 nanowires are synthesized via the LaMer pathway. Interestingly, when polyoxometalate (POM) clusters are introduced during the nucleation process, the 0.9 nm Cu9S5 nanowires are finally formed via covalent co‐assembly, analog to A–B–A–B‐type block co‐polymerization in the polymer field (“A” and “B” represent Cu9S5 unit cells and POM clusters, respectively). Multiple characterizations show that Cu9S5 exists as single‐unit‐cell structure. Therefore, each unit cell can work as an isolated active site. The single‐unit‐cell structure exhibits higher electrocatalytic activity and Faradaic efficiency (FE) of formic acid (82.0% at −0.8 V vs reversible hydrogen electrode (RHE)) during CO2 electroreduction, while the nanocrystal structure generates HCOO−, methanol, and ethanol with low FEs. This study suggests that the single‐unit‐cell catalyst displays great potential for precise catalysis by the finite size effect.

Keywords: unit cell; cu9s5 nanowires; single unit; catalysis; unit

Journal Title: Advanced Energy Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.