LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving Electrocatalytic Nitrogen Reduction Selectivity and Yield by Suppressing Hydrogen Evolution Reaction via Electronic Metal–Support Interaction

Photo by markusspiske from unsplash

The electrochemical nitrogen reduction reaction (NRR) has the potential to replace the Haber–Bosch process for ammonia synthesis under ambient conditions. However, the selectivity and yield of the NRR are impractical,… Click to show full abstract

The electrochemical nitrogen reduction reaction (NRR) has the potential to replace the Haber–Bosch process for ammonia synthesis under ambient conditions. However, the selectivity and yield of the NRR are impractical, owing to the preferential binding of the electrocatalyst to H and the consequential coverage of active sites. In this study, VO2, with N2 strongly adsorbed over H atoms, is used as a support to provide a N2 source to avoid the hydrogen evolution reaction. Mo, with a high NRR activity, is introduced as the active site to promote the NRR. Meanwhile, the electronic metal–support interaction between the support and Mo creates electron‐deficient sites, which weakens H adsorption and lowers the energy barrier of the first step, protonation, thereby kinetically enhancing the NRR activity. The average NH3 yield of Mo/VO2 is 190.1 µgNH3 mgcat.−1 h−1 and the Faradaic efficiency is 32.4% at −0.5 V versus reversible hydrogen electrode, which is 10.8 and 2.8 times greater than that of VO2, respectively.

Keywords: reaction; selectivity yield; hydrogen; nitrogen reduction; support

Journal Title: Advanced Energy Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.