The further application of promising transition‐metal chalcogenides (TMCs) cathodes in dilute neutral aqueous Zn batteries (AZBs) is mainly plagued by unsatisfactory working voltages (usually Click to show full abstract
The further application of promising transition‐metal chalcogenides (TMCs) cathodes in dilute neutral aqueous Zn batteries (AZBs) is mainly plagued by unsatisfactory working voltages (usually <1 V vs Zn2+/Zn) and their conventional cationic redox centers reaching theoretical capacity limit. Hence, to break the confinement, a novel Zn‐Cu2‐xSe battery is developed in dilute neutral‐aqueous electrolyte by introducing a tailored charge‐carrier, which not only alters the intercalation potential of ions embedded into Cu2‐xSe (vs Zn2+/Zn, working voltage from ≈0.4 to ≈1.2 V) but also activates the anionic redox centers of Cu2‐xSe (capacity release from 143.4 to 323.2 mAh g−1 at 0.4 A g−1). In situ synchrotron X‐ray diffraction (SXRD) and substantial ex situ characterizations reveal the multi‐step phase conversion undergone by cathode and triggered additional Se‐based anionic (Sen2−/Se2−) reversible redox reaction. A multi‐electron synergistic transfer process established on the cationic‐anionic redox centers circumvents the slow relaxation of single‐ion charge compensation achieving high‐capacity and enhanced ion diffusion kinetics. As a result, an extraordinary energy density of up to 406.2 Wh kg−1 at 240 W kg−1 is implemented (calculated based on the mass of Cu2‐xSe cathode), which is ≈8.4 times higher than that of conventional Zn‐Cu2‐xSe batteries, representing an advanced development toward energetic AZBs.
               
Click one of the above tabs to view related content.