LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heterogeneous fenton and photo-fenton oxidation for paracetamol removal using iron containing ZSM-5 zeolite as catalyst

Photo by _michaelsala_ from unsplash

Paracetamol is commonly found in wastewaters, as a consequence of its high consumption and incomplete elimination by conventional treatments. Homogenous (photo-)Fenton oxidation has proved efficient for its remediation, but it… Click to show full abstract

Paracetamol is commonly found in wastewaters, as a consequence of its high consumption and incomplete elimination by conventional treatments. Homogenous (photo-)Fenton oxidation has proved efficient for its remediation, but it suffers from uneasy dissolved iron recovery. Therefore this work examines the performance and stability of an iron containing zeolite (Fe/MFI) as catalyst for this reaction. Effects of reaction parameters (pH, temperature, catalyst and H2O2 concentrations, UV/vis irradiation) are investigated in batch conditions, by comparing the pollutant and Total Organic Carbon disappearance rates in solution, as well as the overall mineralization yield (including solid phase) and oxidant consumption. At near neutral pH paracetamol can be fully converted after 5 h, while TOC removal reaches up to 60%. Finally, thanks to good catalyst stability (low leaching), a continuous process coupling oxidation and membrane filtration is proposed, showing constant TOC conversion over 40 h and iron loss in the permeate <0.3 ppm. © 2016 American Institute of Chemical Engineers AIChE J, 63: 669–679, 2017

Keywords: oxidation; photo fenton; paracetamol; iron; catalyst; fenton

Journal Title: Aiche Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.