LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bubble splitting under gas–liquid–liquid three‐phase flow in a double T‐junction microchannel

Photo from wikipedia

Gas-aqueous liquid-oil three-phase flow was generated in a microchannel with a double T-junction. Under the squeezing of the dispersed aqueous phase at the second T-junction (T2), the splitting of bubbles… Click to show full abstract

Gas-aqueous liquid-oil three-phase flow was generated in a microchannel with a double T-junction. Under the squeezing of the dispersed aqueous phase at the second T-junction (T2), the splitting of bubbles generated from the first T-junction (T1) was investigated. During the bubble splitting process, the upstream gas-oil two-phase flow and the aqueous phase flow at T2 fluctuate in opposite phases, resulting in either independent or synchronous relationship between the instantaneous downstream and upstream bubble velocities depending on the operating conditions. Compared with two-phase flow, the modified capillary number and the ratio of the upstream velocity to the aqueous phase velocity were introduced to predict the bubble breakup time. The critical bubble breakup length and size laws of daughter bubbles/slugs were thereby proposed. These results provide an important guideline for designing microchannel structures for a precise manipulation of gas-liquid-liquid three-phase flow which finds potential applications among others in chemical synthesis. This article is protected by copyright. All rights reserved.

Keywords: phase; liquid; gas; phase flow; junction

Journal Title: Aiche Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.