LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced gas migration through permeable bubble networks within consolidated soft sediments

Photo from academic.microsoft.com

Many consolidated sediments experience in situ gas generation from methanogenesis, corrosion, or radiolysis reactions and can retain bubbles for long periods. Particular interest is motivated by the retention and acute… Click to show full abstract

Many consolidated sediments experience in situ gas generation from methanogenesis, corrosion, or radiolysis reactions and can retain bubbles for long periods. Particular interest is motivated by the retention and acute release of flammable hydrogen from nuclear legacy waste sludge. X-ray computed tomography was employed to observe 0.07–10 mm bubble populations within 30–1112 Pa yield strength Mg(OH) sediments. High rates of partial coalescence were observed among sub-millimeter microvoids, forming extensive bubble networks which spanned the 32 mm field of view. Lattice Boltzmann and Monte Carlo modeling demonstrated these networks to be highly pervious to gas, with effective diffusivities for hydrogen of 3.7–12.5 × 10 m s. Continuous vessel-spanning bubble networks, dynamic connectivity between ganglia of coalesced bubbles, Haines jumps, and composite diffusion through the gas and aqueous phase can account for enhanced gas migration over length-scales of several meters, thus enabling chronic gas release from low-intermediate strength sediments (10 Pa ≲τ≲1 kPa) too strong for buoyant bubble ebullition and too weak for vertical channel formation.

Keywords: bubble networks; gas migration; gas; enhanced gas; migration permeable

Journal Title: Aiche Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.