LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decoding family-level features for modern and fossil leaves from computer-vision heat maps.

Photo from wikipedia

PREMISE OF THE STUDY Angiosperm leaves present a classic identification problem due to their morphological complexity. Computer-vision algorithms can identify diagnostic regions in images, and heat map outputs illustrate those… Click to show full abstract

PREMISE OF THE STUDY Angiosperm leaves present a classic identification problem due to their morphological complexity. Computer-vision algorithms can identify diagnostic regions in images, and heat map outputs illustrate those regions for identification, providing novel insights through visual feedback. We investigate the potential of analyzing leaf heat maps to reveal novel, human-friendly botanical information with applications for extant- and fossil-leaf identification. METHODS We developed a manual scoring system for hotspot locations on published computer-vision heat maps of cleared leaves that showed diagnostic regions for family identification. Heat maps of 3114 cleared leaves of 930 genera in 14 angiosperm families were analyzed. The top-5 and top-1 hotspot regions of highest diagnostic value were scored for 21 leaf locations. The resulting data were viewed using box plots and analyzed using cluster and principal component analyses. We manually identified similar features in fossil leaves to informally demonstrate potential fossil applications. KEY RESULTS The method successfully mapped machine strategy using standard botanical language, and distinctive patterns emerged for each family. Hotspots were concentrated on secondary veins (Salicaceae, Myrtaceae, Anacardiaceae), tooth apices (Betulaceae, Rosaceae), and on the little-studied leaf margins of untoothed leaves (Rubiaceae, Annonaceae, Ericaceae). Similar features drove the results from multivariate analyses. The results echo many traditional observations, while also showing that most diagnostic leaf features remain undescribed. CONCLUSIONS Machine-derived heat maps that initially appear to be dominated by noise can be translated into human-interpretable knowledge, highlighting paths forward for botanists and paleobotanists to discover new diagnostic botanical characters. This article is protected by copyright. All rights reserved.

Keywords: computer vision; heat; family; heat maps

Journal Title: American journal of botany
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.