The effects of space travel have renewed importance with space tourism and plans for long‐term missions to the moon and Mars. The study of space anemia is limited by the… Click to show full abstract
The effects of space travel have renewed importance with space tourism and plans for long‐term missions to the moon and Mars. The study of space anemia is limited by the availability of subjects and extreme conditions. An approach using the accumulated data on human space flight may characterize space anemia. A total of 17 336 hemoglobin (Hb) concentration measures from 721 space missions and controls were used to study acute and long‐term effects of duration of exposure to space on Hb decrement. Nearly half of astronauts (48%) landing after long duration missions were anemic. Returning to Earth revealed Hb decrements whose magnitude and time to recover were dependent on exposure to space: −0.61 g/dL (4%), −0.82 g/dL (5%) and −1.66 g/dL (11%) of preflight Hb for mean exposure to space of 5.4, 11.5, and 145 days, respectively. Astronauts returning from a mean 5.4 days in space took 24 days to return to preflight Hb while astronauts 11.5 to 145 days in space took 49 days. Negative effects of microgravity on Hb persisted throughout female and male astronautsʼ terrestrial lives (−0.001 and −0.002 mg/dL Hb respectively) for every day spent in space (both P < .05). The negative effect of exposure to space was not overcome by a statistically significant effect of being an astronaut compared to controls. Exposure to space showed a dose‐response relationship with acute and chronic Hb decrements. Space anemia contributes to the deconditioning of astronauts returning to Earth, and needs to be considered for space travel to other planets, space tourism and for the care of bedridden patients who present similar changes as astronauts.
               
Click one of the above tabs to view related content.