LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transferrin receptor 2 (Tfr2) genetic deletion makes transfusion‐independent a murine model of transfusion‐dependent β‐thalassemia

Photo from wikipedia

β‐thalassemia is a genetic disorder caused by mutations in the β‐globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion‐dependent form of… Click to show full abstract

β‐thalassemia is a genetic disorder caused by mutations in the β‐globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion‐dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron‐regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron‐overload in non‐TDT mice, both as a monotherapy and, even more strikingly, in combination with iron‐restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α‐globin, which partially corrects the unbalance with β‐globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long‐term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion‐associated complications, such as progressive iron‐loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.

Keywords: transfusion dependent; deletion; iron; transferrin receptor; transfusion; receptor tfr2

Journal Title: American Journal of Hematology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.