LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bilateral asymmetry and developmental plasticity of the humerus in modern humans.

Photo by jsnbrsc from unsplash

OBJECTIVE This study investigates bilateral asymmetry in the humerus of modern human populations with differing activity patterns to assess the relative plasticity of different bone regions in response to environmental… Click to show full abstract

OBJECTIVE This study investigates bilateral asymmetry in the humerus of modern human populations with differing activity patterns to assess the relative plasticity of different bone regions in response to environmental influences, particularly the biomechanical demands of handedness. METHODS External breadths, cross-sectional properties, and centroid sizes were used to quantify directional and absolute asymmetry of humeral diaphyseal, distal periarticular, and articular regions in six populations with differing subsistence strategies (total n = 244). Geometric section properties were measured using computed tomography at six locations along the distal humerus, while centroid sizes of the distal articular and periarticular regions, as well as eight segments of the diaphysis, were extracted from external landmark data. Bilateral asymmetries were compared between populations and sexes. Each property was also tested for correlation with bilateral asymmetry at 40% of bone length, which has been shown to correlate with handedness. RESULTS Asymmetry is highest in the diaphysis, but significant through all distal bone regions. Asymmetry increases in the region of the deltoid tuberosity, and progressively declines distally through the shaft and distal periarticular region. Articular asymmetry is higher than periarticular asymmetry, approaching levels seen just proximal to the olecranon fossa, and is weakly but significantly correlated with diaphyseal asymmetry. Hunter-gatherers from Indian Knoll have significantly higher levels of asymmetry than other groups and are more sexually dimorphic, particularly in cross-sectional properties of the diaphysis. CONCLUSIONS Humeral dimensions throughout the diaphysis, including regions currently used in taxonomic assignments of fossil hominins, likely respond to in vivo use, including population and sex-specific behaviors.

Keywords: humerus modern; asymmetry; asymmetry developmental; bilateral asymmetry; plasticity

Journal Title: American journal of physical anthropology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.