LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

COVID-19 induces neuroinflammation and suppresses peroxisomes in the brain.

Photo from wikipedia

OBJECTIVE Peroxisome injury occurs in the central nervous system (CNS) during multiple virus infections that result in neurological disabilities. We investigated host neuroimmune responses and peroxisome biogenesis factors during SARS-CoV-2… Click to show full abstract

OBJECTIVE Peroxisome injury occurs in the central nervous system (CNS) during multiple virus infections that result in neurological disabilities. We investigated host neuroimmune responses and peroxisome biogenesis factors during SARS-CoV-2 infection using a multiplatform strategy. METHODS Brain tissues from COVID-19 (n=12) and other disease control (ODC) (n=12) patients, as well as primary human neural cells and Syrian hamsters, infected with a clinical variant of SARS-CoV-2, were investigated by ddPCR, RT-qPCR and immunodetection methods. RESULTS SARS-CoV-2 RNA was detected in the CNS of four patients with COVID-19 with viral protein (NSP3 and spike) immunodetection in the brainstem. Olfactory bulb, brainstem, and cerebrum from patients with COVID-19 showed induction of pro-inflammatory transcripts (IL8, IL18, CXCL10, NOD2) and cytokines (GM-CSF and IL-18) compared to CNS tissues from ODC patients (p<0.05). Peroxisome biogenesis factor transcripts (PEX3, PEX5L, PEX11β and PEX14) and proteins (PEX3, PEX14, PMP70) were suppressed in the CNS of COVID-19 patients compared to ODCs (p<0.05). SARS-CoV-2 infection of hamsters revealed viral RNA detection in the olfactory bulb at days 4 and 7 post-infection while inflammatory gene expression was upregulated in the cerebrum of infected animals by day 14 post-infection (p<0.05). Pex3 transcript levels together with catalase and PMP70 immunoreactivity were suppressed in the cerebrum of SARS-CoV-2 infected animals (p<0.05). INTERPRETATION COVID-19 induced sustained neuroinflammatory responses with peroxisome biogenesis factor suppression despite limited brainstem SARS-CoV-2 neurotropism in humans. These observations offer insights into developing biomarkers and therapies, while also implicating persistent peroxisome dysfunction as a contributor to the neurological post-acute sequelae of COVID-19. This article is protected by copyright. All rights reserved.

Keywords: covid induces; infection; brain; covid; sars cov; peroxisome biogenesis

Journal Title: Annals of neurology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.