One-dimensional nonlinear Schr\"odinger equations are derived to describe the axial effective dynamics of cigar-shaped atomic repulsive Bose-Einstein condensates trapped with anharmonic transverse potentials. The accuracy of these equations in the… Click to show full abstract
One-dimensional nonlinear Schr\"odinger equations are derived to describe the axial effective dynamics of cigar-shaped atomic repulsive Bose-Einstein condensates trapped with anharmonic transverse potentials. The accuracy of these equations in the perturbative, Thomas-Fermi, and crossover regimes were verified numerically by comparing the ground-state profiles, transverse chemical potentials and oscillation patterns with those results obtained for the full three-dimensional Gross-Pitaevskii equation. This procedure allows us to derive different patterns of 1D nonlinear models by the control of the transverse confinement.
               
Click one of the above tabs to view related content.