A geometric phase model for electromagnetic radiating elements is proposed. By rotation of the radiating element, a frequency‐independent geometric phase occurs for circularly polarized components of radiation field along every… Click to show full abstract
A geometric phase model for electromagnetic radiating elements is proposed. By rotation of the radiating element, a frequency‐independent geometric phase occurs for circularly polarized components of radiation field along every direction in far field. In addition, the geometric phase is equal to the rotation angle for a circularly polarized source, which enables phase modulation ranging from 0 to 2π. In contrast, the Pancharatnam–Berry phase for circular polarization conversion components brought by optical element rotation is twice the rotation angle and is applicable only for the scattering waves propagating along the rotation axis. As a proof of principle, an antenna array is designed and fabricated in microwave regime to verify the phase modulation approach. Both the calculated and measured results verify that three different orbital angular momentum modes are generated simultaneously at 8.5 GHz and 11.5 GHz.
               
Click one of the above tabs to view related content.