LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea

Photo from wikipedia

Glycerol and urea were used as green and cheap sources of carbon quantum dots (CQD) for modifying Fe3O4 nanoparticles (NPs). The obtained CQD@Fe3O4 NPs were used for the stabilization of… Click to show full abstract

Glycerol and urea were used as green and cheap sources of carbon quantum dots (CQD) for modifying Fe3O4 nanoparticles (NPs). The obtained CQD@Fe3O4 NPs were used for the stabilization of palladium species and the prepared catalyst, Pd@CQD@Fe3O4, was characterized using various techniques. This magnetic supported palladium was applied as an efficient catalyst for the reduction of aromatic nitro compounds to primary amines at room temperature using very low palladium loading (0.008 mol%) and also for the Suzuki–Miyaura cross-coupling reaction of aryl halides as well as challenging heteroaryl bromides and aryl diazonium salts with arylboronic acids and with potassium phenyltrifluoroborate. This magnetically recyclable catalyst was recovered and reused for seven consecutive runs in the reduction of 4-nitrotoluene to p-toluidine and for ten consecutive runs in the reaction of 4-iodoanisole with phenylboronic acid with small decrease of activity. The catalyst reused in the Suzuki reaction was characterized using transmission electron microscopy, vibrating sample magnetometry and X-ray photoelectron spectroscopy. Using experiments such as hot filtration and poisoning tests, it has been shown that the true catalyst works under homogeneous conditions according to the release–return pathway of active palladium species.

Keywords: reduction; glycerol urea; carbon quantum; reaction; palladium; catalyst

Journal Title: Applied Organometallic Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.