LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers

Photo by boxedwater from unsplash

The reinforcing effects of biocarbon of varying particle size ranges (crushed, Click to show full abstract

The reinforcing effects of biocarbon of varying particle size ranges (crushed, <500, 500–426, 250–213, and <63 µm) on biobased polyamide 6,10 (PA 6,10) at 20 wt % loading were investigated for the resulting biocomposites. The heat deflection temperature and impact strength were observed to increase with reduction in particle size. Also, a 200% increase in the impact strength was observed in the biocomposite with biocarbon particles sized at <63 µm when compared to that with <500 µm. A 50% and 83% increase in the tensile and flexural moduli of the biocomposite with biocarbon particle size of <500 µm was observed, respectively, while the tensile strength was observed to remain unchanged. The flexural strength of the biocomposites was improved by 61% when compared to neat nylon. These results were due to good wetting, dispersion and increased surface area of the biocarbon within the nylon matrix. These results show the potential of biocarbon as reinforcing filler in nylon for applications especially in the automotive industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44221.

Keywords: particle size; biobased polyamide; sustainable biocomposites; biocarbon; strength observed

Journal Title: Journal of Applied Polymer Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.