LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increased stability in self-healing polymer networks based on reversible Michael addition reactions

Photo from wikipedia

A reversible thiol-ene click reaction is utilized to design novel self-healing polymers. These materials are based on a new methacrylate monomer featuring a benzylcyanoacetamide derivative, which is copolymerized with butyl… Click to show full abstract

A reversible thiol-ene click reaction is utilized to design novel self-healing polymers. These materials are based on a new methacrylate monomer featuring a benzylcyanoacetamide derivative, which is copolymerized with butyl methacrylate. Afterwards, the crosslinking is performed by the addition of a dithiol and a tetrathiol, respectively. Self-healing behavior is obtained by heating the crosslinked polymers to 100 °C (150 °C) for several hours and is monitored by scratch healing experiments utilizing an optical microscope. The thermal properties are studied in detail by differential scanning calorimetry as well as thermogravimetric analysis. Moreover, depth-sensing indentation measurements are performed to determine the mechanical properties. The healing process is based on the reversible cleavage/closing of the bonds (i.e., thiol-ene reaction), which could be demonstrated by Raman spectroscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44805.

Keywords: based reversible; addition; increased stability; stability self; self healing

Journal Title: Journal of Applied Polymer Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.