Furfuryl alcohol as a biomass-derived monomer was used for synthesizing poly(furfuryl alcohol). A diglycidyl ether of bisphenol A (DGEBA) epoxy resin along with 3% and 15% by weight of the… Click to show full abstract
Furfuryl alcohol as a biomass-derived monomer was used for synthesizing poly(furfuryl alcohol). A diglycidyl ether of bisphenol A (DGEBA) epoxy resin along with 3% and 15% by weight of the poly(furfuryl alcohol) was cured using an aliphatic amine hardener. The cure kinetics of the DGEBA/poly(furfuryl alcohol)/amine systems were investigated by nonisothermal differential scanning calorimetry. The kinetic triplets [Eα, Aα, and f(α)] were computed by using an integral isoconversional method. Based on the Eα-dependency results a single-step autocatalytic model was suggested for the reactions mechanism, however, the Aα-dependency and f(α) analysis did not confirm the suggested model. Detailed kinetics analysis revealed that the cure reaction mechanism of the DGEBA did not change due to the presence of the poly(furfuryl alcohol) in the degree of conversion range 0.75 due to the presence of 15 wt % poly(furfuryl alcohol). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45432.
               
Click one of the above tabs to view related content.