In this work, we fabricated plasmonic organic bulk–heterojunction solar cells by inserting hydrophobic gold nanorods (GNRs) into the active layers. Power conversion efficiency was improved from 7.43% to 8.22% because… Click to show full abstract
In this work, we fabricated plasmonic organic bulk–heterojunction solar cells by inserting hydrophobic gold nanorods (GNRs) into the active layers. Power conversion efficiency was improved from 7.43% to 8.22% because the plasmonic effect of GNRs improved the light harvesting efficiency. Maximum exciton generation rate was increased from 1.35 × 10−26 to 1.51× 10−26m−3 s−1, and the electron mobility was also increased from 8.6 × 10−5 to 1.5× 10−4cm−2 V−1 s−1. As a result, the short circuit current density was improved from 15.5 to 16.7 mA cm−2—the dominant reason for performance enhancement. The open circuit voltage and fill factor were improved simultaneously. The plasmonic device showed a highest PCE of 8.43%, indicating that doping GNRs into active layers is a simple and effective way to fabricate high-performance organic solar cells. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 135, 45920.
               
Click one of the above tabs to view related content.