LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubes

Photo from wikipedia

Composites of two hot melt adhesives based on co-polyamides, one high viscosity (coPA_A), the other low viscosity (coPA_B), and multiwalled carbon nanotubes (MWCNTs) were prepared using twin-screw extrusion via dilution… Click to show full abstract

Composites of two hot melt adhesives based on co-polyamides, one high viscosity (coPA_A), the other low viscosity (coPA_B), and multiwalled carbon nanotubes (MWCNTs) were prepared using twin-screw extrusion via dilution of masterbatches. Examination of these composites across the length scales confirmed that the MWCNTs were uniformly dispersed and distributed in the polymer matrices, although some micron size agglomerations were also observed. A rheological percolation was determined from oscillatory rheology measurements at a mass fraction of MWCNTs below 0.01 for coPA_B and, between 0.01 and 0.02 for coPA_A. Significant increases in complex viscosity and storage modulus confirmed the “pseudo-solid” like behavior of the composite materials. Electrical percolation, determined from dielectric spectroscopy was, found to be at 0.03 and 0.01 MWCNT mass fraction for coPA_A and coPA_B based composites, respectively. Addition of MWCNTs resulted in heterogeneous nucleation and altered the crystallization kinetics of both copolymers. Indirect evidence from contact angle measurements and surface energy calculations confirmed that MWCNT addition enhanced the adhesive properties of coPA_B to a level similar to coPA_A. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45999.

Keywords: multiwalled carbon; carbon nanotubes; hot melt; melt adhesives; adhesives based; copa

Journal Title: Journal of Applied Polymer Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.